BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Giraf

 

Coming soon: GIRAF 2011 Workshop

5. - 9. December 2011
Dar es Salaam, Tanzania
Organised by the IUGS-CGI and UNESCO
Hosting Organisation: SEAMIC

 

GIRAF: Geoscience InfoRmation AFrica. Logo

Lithosphere

 

A lithosphere is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.

Earth's lithosphere includes the crust and the uppermost mantle, which constitute the hard and rigid outer layer of the Earth. The lithosphere is subdivided into tectonic plates. The uppermost part of the lithosphere that chemically reacts to the atmosphere, hydrosphere, and biosphere through the soil forming process is called the pedosphere. The lithosphere is underlain by the asthenosphere which is the weaker, hotter, and deeper part of the upper mantle. The Lithosphere-Asthenosphere boundary is defined by a difference in response to stress: the lithosphere remains rigid for very long periods of geologic time in which it deforms elastically and through brittle failure, while the asthenosphere deforms viscously and accommodates strain through plastic deformation.

The concept of the lithosphere as Earth's strong outer layer was described by A.E.H. Love in his 1911 monograph "Some problems of Geodynamics" and further developed by Joseph Barrell, who wrote a series of papers about the concept and introduced the term "lithosphere". The concept was based on the presence of significant gravity anomalies over continental crust, from which he inferred that there must exist a strong, solid upper layer (which he called the lithosphere) above a weaker layer which could flow (which he called the asthenosphere). These ideas were expanded by Reginald Aldworth Daly in 1940 with his seminal work "Strength and Structure of the Earth." They have been broadly accepted by geologists and geophysicists. These concepts of a strong lithosphere resting on a weak asthenosphere are essential to the theory of plate tectonics.

Oceanic lithosphere consists mainly of mafic crust and ultramafic mantle (peridotite) and is denser than continental lithosphere, for which the mantle is associated with crust made of felsic rocks. Oceanic lithosphere thickens as it ages and moves away from the mid-ocean ridge. This thickening occurs by conductive cooling, which converts hot asthenosphere into lithospheric mantle and causes the oceanic lithosphere to become increasingly thick and dense with age. In fact, oceanic lithosphere is a thermal boundary layer for the convection in the mantle. The thickness of the mantle part of the oceanic lithosphere can be approximated as a thermal boundary layer that thickens as the square root of time.

Oceanic lithosphere is less dense than asthenosphere for a few tens of millions of years but after this becomes increasingly denser than asthenosphere. This is because the chemically differentiated oceanic crust is lighter than asthenosphere, but thermal contraction of the mantle lithosphere makes it more dense than the asthenosphere. The gravitational instability of mature oceanic lithosphere has the effect that at subduction zones, oceanic lithosphere invariably sinks underneath the overriding lithosphere, which can be oceanic or continental. New oceanic lithosphere is constantly being produced at mid-ocean ridges and is recycled back to the mantle at subduction zones. As a result, oceanic lithosphere is much younger than continental lithosphere: the oldest oceanic lithosphere is about 170 million years old, while parts of the continental lithosphere are billions of years old. The oldest parts of continental lithosphere underlie cratons, and the mantle lithosphere there is thicker and less dense than typical; the relatively low density of such mantle "roots of cratons" helps to stabilize these regions.

Geophysical studies in the early 21st century posit that large pieces of the lithosphere have been subducted into the mantle as deep as 2900 km to near the core-mantle boundary, while others "float" in the upper mantle, while some stick down into the mantle as far as 400 km but remain "attached" to the continental plate above, similar to the extent of the "tectosphere" proposed by Jordan in 1988.

Geoscientists can directly study the nature of the subcontinental mantle by examining mantle xenoliths brought up in kimberlite, lamproite, and other volcanic pipes. The histories of these xenoliths have been investigated by many methods, including analyses of abundances of isotopes of osmium and rhenium. Such studies have confirmed that mantle lithospheres below some cratons have persisted for periods in excess of 3 billion years, despite the mantle flow that accompanies plate tectonics.

Contact

    
Dr. Kristine Asch
Phone: +49-(0)511-643-3324
Fax: +49-(0)511-643-3782