BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Giraf

 

Coming soon: GIRAF 2011 Workshop

5. - 9. December 2011
Dar es Salaam, Tanzania
Organised by the IUGS-CGI and UNESCO
Hosting Organisation: SEAMIC

 

GIRAF: Geoscience InfoRmation AFrica. Logo

Magma

 

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle and/or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion (e.g., an igneous dike or a sill). While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects-twice in Iceland (see Magma usage for energy production), and once in Hawaii.

Most magmatic liquids are rich in silica. Silicate melts are composed mainly of silicon, oxygen, aluminium, iron, magnesium, calcium, sodium, and potassium. The physical behaviours of melts depend upon their atomic structures as well as upon temperature and pressure and composition.

Viscosity is a key melt property in understanding the behaviour of magmas. More silica-rich melts are typically more polymerized, with more linkage of silica tetrahedra, and so are more viscous. Dissolution of water drastically reduces melt viscosity. Higher-temperature melts are less viscous.

It is usually very difficult to change the bulk composition of a large mass of rock, so composition is the basic control on whether a rock will melt at any given temperature and pressure. The composition of a rock may also be considered to include volatile phases such as water and carbon dioxide.

Also a major portion of almost all magma is silica, which is a compound of silicon and oxygen. Magma also contains gases, which expand as the magma rises. Magma that is high in silica resists flowing, so expanding gases are trapped in it. Pressure builds up until the gases blast out in a violent, dangerous explosion. Magma that is relatively poor in silica flows easily, so gas bubbles move up through it and escape fairly gently.

Melting of solid rocks to form magma is controlled by three physical parameters: temperature, pressure, and composition. The most common mechanisms of magma generation in the mantle are decompression melting, heating (e.g., by interaction with a hot mantle plume), and lowering of the solidus (e.g., by compositional changes such as the addition of water). Mechanisms are discussed further in the entry for igneous rock.

When rocks melt, they do so slowly and gradually because most rocks are made of several minerals, which all have different melting points; moreover, the physical and chemical relationships controlling the melting are complex. As a rock melts, for example, its volume changes. When enough rock is melted, the small globules of melt (generally occurring between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent of partial melting may be sufficient to cause melt to be squeezed from its source. Melts can stay in place long enough to melt to 20% or even 35%, but rocks are rarely melted in excess of 50%, because eventually the melted rock mass becomes a crystal-and-melt mush that can then ascend en masse as a diapir, which may then cause further decompression melting.

Rock types produced by small degrees of partial melting in the Earth's mantle are typically alkaline (Ca, Na), potassic (K) and/or peralkaline (high aluminium to silica ratio). Typically, primitive melts of this composition form lamprophyre, lamproite, kimberlite and sometimes nepheline-bearing mafic rocks such as alkali basalts and essexite gabbros or even carbonatite.

When a rock melts, the liquid is a primary melt. Primary melts have not undergone any differentiation and represent the starting composition of a magma. In nature it is rare to find primary melts. The leucosomes of migmatites are examples of primary melts. Primary melts derived from the mantle are especially important, and are known as primitive melts or primitive magmas. By finding the primitive magma composition of a magma series it is possible to model the composition of the mantle from which a melt was formed, which is important in understanding evolution of the mantle.

Magma develops within the mantle or crust where the temperature and pressure conditions favor the molten state. After its formation, magma buoyantly rises toward the Earth's surface. As it migrates through the crust, magma may collect and reside in magma chambers (though recent work suggests that magma may be stored in trans-crustal crystal-rich mush zones rather than dominantly liquid magma chambers). Magma can remain in a chamber until it cools and crystallizes forming igneous rock, it erupts as a volcano, or moves into another magma chamber.There are two known processes by which magma changes: by crystallization within the crust or mantle to form a pluton, or by volcanic eruption to become lava or tephra.

Contact

    
Dr. Kristine Asch
Phone: +49-(0)511-643-3324
Fax: +49-(0)511-643-3782