BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Giraf

 

Coming soon: GIRAF 2011 Workshop

5. - 9. December 2011
Dar es Salaam, Tanzania
Organised by the IUGS-CGI and UNESCO
Hosting Organisation: SEAMIC

 

GIRAF: Geoscience InfoRmation AFrica. Logo

Pedosphere

 

The pedosphere acts as the mediator of chemical and biogeochemical flux into and out of these respective systems and is made up of gaseous, mineralic, fluid and biologic components. The pedosphere lies within the Critical Zone, a broader interface that includes vegetation, pedosphere, groundwater aquifer systems, regolith and finally ends at some depth in the bedrock where the biosphere and hydrosphere cease to make significant changes to the chemistry at depth. As part of the larger global system, any particular environment in which soil forms is influenced solely by its geographic position on the globe as climatic, geologic, biologic and anthropogenic changes occur with changes in longitude and latitude.

The primary conditions for soil development are controlled by the chemical composition of the rock that the soil will eventually be forming on. Rock types that form the base of the soil profile are often either sedimentary (carbonate or siliceous), igneous or metaigneous (metamorphosed igneous rocks) or volcanic and metavolcanic rocks. The rock type and the processes that lead to its exposure at the surface are controlled by the regional geologic setting of the specific area under study, which revolve around the underlying theory of plate tectonics, subsequent deformation, uplift, subsidence and deposition.

However, lichens are not necessarily the only pioneering organisms nor the earliest form of soil formation as it has been documented that seed-bearing plants may occupy an area and colonize quicker than lichen. Also, eolian sedimentation can produce high rates of sediment accumulation. Nonetheless, lichen can certainly withstand harsher conditions than most vascular plants and although they have slower colonization rates, do form the dominant group in alpine regions.

Acids released from plant roots include acetic and citric acids. During the decay of organic matter Phenolic acids are released from plant matter and humic and fulvic acids are released by soil microbes. These organic acids speed up chemical weathering by combining with some of the weathering products in a process known as chelation. In the soil profile, the organic acids are often concentrated at the top while carbonic acid plays a larger role towards the bottom or below in the aquifer.

As the soil column develops further into thicker accumulations, larger animals come to inhabit the soil and continue to alter the chemical evolution of their respective niche. Earthworms aerate the soil and convert large amounts of organic matter into rich humus, improving soil fertility. Small burrowing mammals store food, grow young and may hibernate in the pedosphere altering the course of soil evolution. Large mammalian herbivores above ground transport nutrients in form of nitrogen-rich waste and phosphorus-rich antlers while predators leave phosphorus-rich piles of bones on the soil surface, leading the localized enrichment of the soil below.

The redox potential describes which way chemical reactions will proceed in oxygen deficient soils and controls the nutrient cycling in flooded systems. Redox potential, or reduction potential, is used to express the likelihood of an environment to receive electrons and therefore become reduced. For example, if a system already has plenty of electrons (anoxic, organic-rich shale) it is reduced and will likely donate electrons to a part of the system that has a low concentration of electrons, or an oxidized environment, to equilibrate to the chemical gradient. The oxidized environment has high redox potential, whereas the reduced environment has a low redox potential.

Soil is well developed in the forest as suggested by the thick humus layers, rich diversity of large trees and animals that live there. In forests, precipitation exceeds evapotranspiration which results in an excess of water that percolates downward through the soil layers. Slow rates of decomposition leads to large amounts of fulvic acid, greatly enhancing chemical weathering. The downward percolation, in conjunction with chemical weathering leaches magnesium (Mg), iron (Fe), and aluminum (Al) from the soil and transports them downward, a process known as podzolization. This process leads to marked contrasts in the appearance and chemistry of the soil layers.

Tropical forests (rainforests) receive more insolation and rainfall over longer growing seasons than any other environment on earth. With these elevated temperatures, insolation and rainfall, biomass is extremely productive leading to the production of as much as 800 grams of carbon per square meter per year. Higher temperatures and larger amounts of water contribute to higher rates of chemical weathering. Increased rates of decomposition cause smaller amounts of fulvic acid to percolate and leach metals from the zone of active weathering. Thus, in stark contrast to soil in forests, tropical forests have little to no podzolization and therefore do not have marked visual and chemical contrasts with the soil layers. Instead, the mobile metals Mg, Fe and Al are precipitated as oxide minerals giving the soil a rusty red color.

Deserts behave similarly to grasslands but operate in constant drought as precipitation is less than evapotranspiration. Chemical weathering proceeds more slowly than in grasslands and beneath the caliche layer may be a layer of gypsum and halite. To study soils in deserts, pedologists have used the concept of chronosequences to relate timing and development of the soil layers. It has been shown that P is leached very quickly from the system and therefore decreases with increasing age. Furthermore, carbon buildup in the soils is decreased due to slower decomposition rates. As a result, the rates of carbon circulation in the biogeochemical cycle is decreased.

Contact

    
Dr. Kristine Asch
Phone: +49-(0)511-643-3324
Fax: +49-(0)511-643-3782