BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Giraf

 

Coming soon: GIRAF 2011 Workshop

5. - 9. December 2011
Dar es Salaam, Tanzania
Organised by the IUGS-CGI and UNESCO
Hosting Organisation: SEAMIC

 

GIRAF: Geoscience InfoRmation AFrica. Logo

Seafloor spreading

 

Seafloor spreading is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge.

Earlier theories (e.g. by Alfred Wegener and Alexander du Toit) of continental drift postulated that continents "ploughed" through the sea. The idea that the seafloor itself moves (and also carries the continents with it) as it expands from a central axis was proposed by Harry Hess from Princeton University in the 1960s. The theory is well accepted now, and the phenomenon is known to be caused by convection currents in the asthenosphere, which is ductile, or plastic, and the brittle lithosphere (crust and upper mantle).

Seafloor spreading occurs at spreading centers, distributed along the crests of mid-ocean ridges. Spreading centers end in transform faults or in overlapping spreading center offsets. A spreading center includes a seismically active plate boundary zone a few kilometers to tens of kilometers wide, a crustal accretion zone within the boundary zone where the ocean crust is youngest, and an instantaneous plate boundary - a line within the crustal accretion zone demarcating the two separating plates. Within the crustal accretion zone is a 1-2 km-wide neovolcanic zone where active volcanism occurs.

In the general case, seafloor spreading starts as a rift in a continental land mass, similar to the Red Sea-East Africa Rift System today. The process starts by heating at the base of the continental crust which causes it to become more plastic and less dense. Because less dense objects rise in relation to denser objects, the area being heated becomes a broad dome (see isostasy). As the crust bows upward, fractures occur that gradually grow into rifts. The typical rift system consists of three rift arms at approximately 120-degree angles. These areas are named triple junctions and can be found in several places across the world today. The separated margins of the continents evolve to form passive margins. Hess' theory was that new seafloor is formed when magma is forced upward toward the surface at a mid-ocean ridge.

Seafloor spreading can stop during the process, but if it continues to the point that the continent is completely severed, then a new ocean basin is created. The Red Sea has not yet completely split Arabia from Africa, but a similar feature can be found on the other side of Africa that has broken completely free. South America once fit into the area of the Niger Delta. The Niger River has formed in the failed rift arm of the triple junction.

At the Mid-Atlantic Ridge (and in other areas), material from the upper mantle rises through the faults between oceanic plates to form new crust as the plates move away from each other, a phenomenon first observed as continental drift. When Alfred Wegener first presented a hypothesis of continental drift in 1912, he suggested that continents ploughed through the ocean crust. This was impossible: oceanic crust is both more dense and more rigid than continental crust. Accordingly, Wegener's theory wasn't taken very seriously, especially in the United States.

The driver for seafloor spreading in plates with active margins is the weight of the cool, dense, subducting slabs that pull them along. The magmatism at the ridge is considered to be "passive upswelling", which is caused by the plates being pulled apart under the weight of their own slabs. This can be thought of as analogous to a rug on a table with little friction: when part of the rug is off of the table, its weight pulls the rest of the rug down with it.

Contact

    
Dr. Kristine Asch
Phone: +49-(0)511-643-3324
Fax: +49-(0)511-643-3782