BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Giraf

 

Coming soon: GIRAF 2011 Workshop

5. - 9. December 2011
Dar es Salaam, Tanzania
Organised by the IUGS-CGI and UNESCO
Hosting Organisation: SEAMIC

 

GIRAF: Geoscience InfoRmation AFrica. Logo

Storm

 

A storm is any disturbed state of an environment or in an astronomical body's atmosphere especially affecting its surface, and strongly implying severe weather. It may be marked by significant disruptions to normal conditions such as strong wind, tornadoes, hail, thunder and lightning (a thunderstorm), heavy precipitation (snowstorm, rainstorm), heavy freezing rain (ice storm), strong winds (tropical cyclone, windstorm), or wind transporting some substance through the atmosphere as in a dust storm, blizzard, sandstorm, etc.

Storms have the potential to harm lives and property via storm surge, heavy rain or snow causing flooding or road impassibility, lightning, wildfires, and vertical wind shear. Systems with significant rainfall and duration help alleviate drought in places they move through. Heavy snowfall can allow special recreational activities to take place which would not be possible otherwise, such as skiing and snowmobiling.

Storms are created when a center of low pressure develops with the system of high pressure surrounding it. This combination of opposing forces can create winds and result in the formation of storm clouds such as cumulonimbus. Small localized areas of low pressure can form from hot air rising off hot ground, resulting in smaller disturbances such as dust devils and whirlwinds.

A strict meteorological definition of a terrestrial storm is a wind measuring 10 or higher on the Beaufort scale, meaning a wind speed of 24.5 m/s (89 km/h, 55 mph) or more; however, popular usage is not so restrictive. Storms can last anywhere from 12 to 200 hours, depending on season and geography. In North America, the east and northeast storms are noted for the most frequent repeatability and duration, especially during the cold period. Big terrestrial storms alter the oceanographic conditions that in turn may affect food abundance and distribution: strong currents, strong tides, increased siltation, change in water temperatures, overturn in the water column, etc.

Storms do not only occur on Earth; other planetary bodies with a sufficient atmosphere (gas giants in particular) also undergo stormy weather. The Great Red Spot on Jupiter provides a well-known example. Though technically an anticyclone, with greater than hurricane wind speeds, it is larger than the Earth and has persisted for at least 340 years, having first been observed by astronomer Galileo Galilei. Neptune also had its own lesser-known Great Dark Spot.

One particularly large Martian storm was exhaustively studied up close due to coincidental timing. When the first spacecraft to successfully orbit another planet, Mariner 9, arrived and successfully orbited Mars on 14 November 1971, planetary scientists were surprised to find the atmosphere was thick with a planet-wide robe of dust, the largest storm ever observed on Mars. The surface of the planet was totally obscured. Mariner 9's computer was reprogrammed from Earth to delay imaging of the surface for a couple of months until the dust settled, however, the surface-obscured images contributed much to the collection of Mars atmospheric and planetary surface science.

Shipwrecks are common with the passage of strong tropical cyclones. Such shipwrecks can change the course of history, as well as influence art and literature. A hurricane led to a victory of the Spanish over the French for control of Fort Caroline, and ultimately the Atlantic coast of North America, in 1565.

Strong winds from any storm type can damage or destroy vehicles, buildings, bridges, and other outside objects, turning loose debris into deadly flying projectiles. In the United States, major hurricanes comprise just 21% of all landfalling tropical cyclones, but account for 83% of all damage. Tropical cyclones often knock out power to tens or hundreds of thousands of people, preventing vital communication and hampering rescue efforts. Tropical cyclones often destroy key bridges, overpasses, and roads, complicating efforts to transport food, clean water, and medicine to the areas that need it. Furthermore, the damage caused by tropical cyclones to buildings and dwellings can result in economic damage to a region, and to a diaspora of the population of the region.

Hail is one of the most significant thunderstorm hazards to aircraft. When hail stones exceed 0.5 inches (13 mm) in diameter, planes can be seriously damaged within seconds. The hailstones accumulating on the ground can also be hazardous to landing aircraft. Strong wind outflow from thunderstorms causes rapid changes in the three-dimensional wind velocity just above ground level. Initially, this outflow causes a headwind that increases airspeed, which normally causes a pilot to reduce engine power if they are unaware of the wind shear. As the aircraft passes into the region of the downdraft, the localized headwind diminishes, reducing the aircraft's airspeed and increasing its sink rate. Then, when the aircraft passes through the other side of the downdraft, the headwind becomes a tailwind, reducing lift generated by the wings, and leaving the aircraft in a low-power, low-speed descent. This can lead to an accident if the aircraft is too low to effect a recovery before ground contact. As the result of the accidents in the 1970s and 1980s, in 1988 the U.S. Federal Aviation Administration mandated that all commercial aircraft have on-board wind shear detection systems by 1993. Between 1964 and 1985, wind shear directly caused or contributed to 26 major civil transport aircraft accidents in the U.S. that led to 620 deaths and 200 injuries. Since 1995, the number of major civil aircraft accidents caused by wind shear has dropped to approximately one every ten years, due to the mandated on-board detection as well as the addition of Doppler weather radar units on the ground. (NEXRAD)

The 1926 silent film The Johnstown Flood features the Great Flood of 1889 in Johnstown, Pennsylvania. The flood, caused by the catastrophic failure of the South Fork Dam after days of extremely heavy rainfall, prompted the first major disaster relief effort by the American Red Cross, directed by Clara Barton. The Johnstown Flood was depicted in numerous other media (both fictional and in non-fiction), as well.

Contact

    
Dr. Kristine Asch
Phone: +49-(0)511-643-3324
Fax: +49-(0)511-643-3782