BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Giraf

 

Coming soon: GIRAF 2011 Workshop

5. - 9. December 2011
Dar es Salaam, Tanzania
Organised by the IUGS-CGI and UNESCO
Hosting Organisation: SEAMIC

 

GIRAF: Geoscience InfoRmation AFrica. Logo

Thermosphere

 

The dynamics of the thermosphere are dominated by atmospheric tides, which are driven by the very significant diurnal heating. Atmospheric waves dissipate above this level because of collisions between the neutral gas and the ionospheric plasma.

It is convenient to separate the atmospheric regions according to the two temperature minima at about 12 km altitude (the tropopause) and at about 85 km (the mesopause) (Figure 1). The thermosphere (or the upper atmosphere) is the height region above 85 km, while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near 45 km altitude and causes the ozone layer.

The thermosphere contains an appreciable concentration of elemental sodium located in a 10-km thick band that occurs at the edge of the mesosphere, 80 to 100 km above Earth's surface. The sodium has an average concentration of 400,000 atoms per cubic centimeter. This band is regularly replenished by sodium sublimating from incoming meteors. Astronomers have begun utilizing this sodium band to create "guide stars" as part of the optical correction process in producing ultra-sharp ground-based observations.

The solar X-ray and extreme ultraviolet radiation (XUV) at wavelengths < 170 nm is almost completely absorbed within the thermosphere. This radiation causes the various ionospheric layers as well as a temperature increase at these heights (Figure 1). While the solar visible light (380 to 780 nm) is nearly constant with a variability of not more than about 0.1% of the solar constant, the solar XUV radiation is highly variable in time and space. For instance, X-ray bursts associated with solar flares can dramatically increase their intensity over preflare levels by many orders of magnitude over a time span of tens of minutes. In the extreme ultraviolet, the Lyman a line at 121.6 nm represents an important source of ionization and dissociation at ionospheric D layer heights. During quiet periods of solar activity, it alone contains more energy than the rest of the XUV spectrum. Quasi-periodic changes of the order of 100% or greater, with periods of 27 days and 11 years, belong to the prominent variations of solar XUV radiation. However, irregular fluctuations over all time scales are present all the time. During low solar activity, about half of the total energy input into the thermosphere is thought to be solar XUV radiation. Evidently, that solar XUV energy input occurs only during daytime conditions, maximizing at the equator during equinox.

A second source of energy input into the thermosphere is solar wind energy which is transferred to the magnetosphere by mechanisms that are not well understood. One possible way to transfer energy is via a hydrodynamic dynamo process. Solar wind particles penetrate into the polar regions of the magnetosphere where the geomagnetic field lines are essentially vertically directed. An electric field is generated, directed from dawn to dusk. Along the last closed geomagnetic field lines with their footpoints within the auroral zones, field aligned electric currents can flow into the ionospheric dynamo region where they are closed by electric Pedersen and Hall currents. Ohmic losses of the Pedersen currents heat the lower thermosphere (see e.g., Magnetospheric electric convection field). In addition, penetration of high energetic particles from the magnetosphere into the auroral regions enhance drastically the electric conductivity, further increasing the electric currents and thus Joule heating. During quiet magnetospheric activity, the magnetosphere contributes perhaps by a quarter to the thermosphere's energy budget. This is about 250 K of the exospheric temperature in eq.(2). During very large activity, however, this heat input can increase substantially, by a factor of four or more. That solar wind input occurs mainly in the auroral regions during both day and night.

Contact

    
Dr. Kristine Asch
Phone: +49-(0)511-643-3324
Fax: +49-(0)511-643-3782